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Initial Scenario

What can we do to improve our service for you?
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Initial Scenario 4

How to extract information from open-ended questions?

Q Word Cloud

kein Bezug zu Elektronik
spricht mich nicht an belanglos

. . die Slogans gefallen mir nicht monotone Farben
Qualitative summary N , _ S
Langweilig Spmcht MIiCh aNariginen Claim gefallt mir
o C'aim;”"er“a”d'“h ansprechend gestaltet
graue Umgebung zu duster t in Smartoh kauf
a COde plan einpragsam modern regt an ein Smartphone zu kaufen

= Manual coding

= Automatic coding through supervised learning

° Can we improve this through unsupervised Machine Learning?
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Methods Overview 5

’ Naive Keyword Extraction
@ Latent Dirichlet Allocation (LDA; Blei et al., 2003)

@ Embedding-based Topic-Modelling (ETM, Qiang et al., 2016)
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Methods Overview

Naive Keyword Extraction

 Nouns indicate topics

« Extraction through a pre-trained POS
tagger (e.g. spaCy)

» Catch different forms of same word:

Lemmatization or Stemming

« Word Cloud of resulting terms,

highlighting relative frequency

Working from home for me means
freedom and independence. | can
just go for a walk when there is
sunny weather and | need a break.
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Methods Overview

Latent Dirichlet Allocation

« Bayesian generative probabilistic
model

« Each topic is a probability distribution
over words

 Inference: Find the relationship
between words and topics for a given
corpus

L

Topic
assignments

Distribution of topics
over words
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Methods Overview

Latent Dirichlet Allocation

Benefits

« Co-occurring words are grouped into
a topic

» Readily available programming
packages (e.g. gensim)

Number of topics has to be chosen a
priori

Large corpus needed for reasonable

results

No knowledge about relationship
between different words (e.g. “buffet”
and “restaurant”)
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Methods Overview 10

Word Embeddings

king - man + woman = queen

breakfast + lunch = brunch

* Embeddings contain information about word relationships
« Trained on a very large corpus of texts

« Each word becomes a multidimensional vector
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Methods Overview

11

 Extension of the LDA model

1. Aggregate short texts into pseudo-
documents

2. Assign similar words more likely to
the same topic

« Word embeddings are used for
similarity of documents and words

Short Texts
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A large
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Methods Overview

12

Embedding-based Topic Modelling

« Undirected edge between topics for
similar words (binary potential):
Similar words should be more
likely belong to the same topic

« Graphical model is a Markov
Random Field (MRF-LDA, Xie et al.,
2015)

« Weight for binary potential, if 0 model
reduces to LDA

J
L

Topic
assignments

Distribution of topics
over words
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Methods Overview 13

Embedding-based Topic Modelling

Benefits Disadvantages .. .
« Knowledge of word relationships is  Number of pseudo-texts and topics has
incorporated (pre-trained embeddings) to be chosen a priori
* k-Means improves Topic Modelling of « Computationally expensive
short texts

* Requires a large corpus for reasonable
results

* No prepared software packages
available
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Proof-of-Concept g

Datasets

« 10.000 tweets in English language « 10.000 survey responses in German

« Purely observational language

« Responses to three different
questions concerning travel

GOR 2018 | Learning From All Answers | March 1, 2018 E S KO P O S



Proof-of-Concept

16

Results: Resulting Topics with Top5 Words (excerpt)

LDA
Topic #1 Topic #2 Topic #3
hope twitter morning
better phone good
sick use cold
feeling site snow
feel tweets car
Topic #1 Topic #2 Topic #3
gut super immer
geklappt einfach zufrieden
organisiert nein buchen
gefallen unkompliziert gerne
reise schnell reisen

ETM
Topic #1 Topic #2 Topic #3
new sad sleep
cold house time
better watching night
damn night hours
need thank bed
Topic #1 Topic #2 Topic #3
super geklappt service
einfach reibungslos organisation
stimmt vielen hotel
tolle dank hotels
funktioniert perfekt information
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Expert Review 1

’ Classical Machine Learning metrics not informative for real research projects

0 Question of interest for us: Can our (human) colleagues work with the results
provided by the algorithms?

° Are resulting topics coherent?
That is, can words associated with a topic indeed be
grouped into a sensible topic?
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Results: Expert Review (English Dataset)

LDA
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Results: Expert Review (German Dataset)

ﬂm L

Topic
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Expert Review 20

Summary

’ English: LDA results more coherent than ETM results

’ German: ETM and LDA rated equally coherent

° But: Highly dependent on topic selection
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Summary 2

Our Learnings

Proof of Concept — needs further development

Fine-tuning of hyper-parameters and techniques required

Pre-trained word vectors provide valuable information

Lots of data required for best results (> 1,000 responses)

Metric for usefulness in real-world environment?
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Thank You For Your Attention! 22

Further questions? Let's talk!

Sebastian Schmidt
Director Research & Development

Christopher Harms
Consultant Research & Development

YW @chrisharms
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